

rocWMMA User Guide

Contents:

	1. Introduction
	1.1. Synchronous API

	1.2. Supported Data Types

	1.3. Supported Matrix Layouts
	1.3.1. Using rocWMMA API

	1.4. rocWMMA Datatypes

	1.5. rocWMMA Enumeration

	1.6. rocWMMA API functions

	2. Getting Started Guide for Linux
	2.1. Introduction
	2.1.1. Documentation Roadmap

	2.2. Prerequisites

	2.3. Installing pre-built packages

	2.4. Building and Installing rocWMMA
	2.4.1. System Requirements

	2.4.2. Minimum GPU Requirements

	2.4.3. Download rocWMMA

	2.4.4. Build only library

	2.4.5. Build library + samples

	2.4.6. Build library + tests

	2.4.7. Build library + Tests + Assembly

	3. Programmer’s Guide
	3.1. Library Source Code Organization
	3.1.1. The library directory
	3.1.1.1. library/include/rocwmma/

	3.1.1.2. library/include/internal

	3.1.2. The samples directory
	3.1.2.1. samples/sgemmv.cpp

	3.1.2.2. samples/simple_gemm.cpp

	3.1.2.3. samples/simple_dlrm.cpp

	3.1.2.4. samples/common.hpp

	3.1.3. The test directory
	3.1.3.1. test/bin

	3.1.3.2. test/dlrm

	3.1.3.3. test/gemm

	3.1.3.4. test/unit

	3.1.4. Infrastructure

	4. Contributor’s Guide
	4.1. License Agreement

	4.2. Pull-request guidelines

	4.3. StyleGuide
	4.3.1. Interface

	4.3.2. Philosophy

	4.3.3. Implementation

	4.3.4. Format

	5. Disclaimer

1. Introduction

rocWMMA is AMD’s C++ library for accelerating mixed precision matrix multiply-accumulate operations
leveraging specialized GPU matrix cores on AMD’s latest discrete GPUs.

A C++ API is provided to facilitate decomposition of matrix multiply-accumulate problems into
discretized block fragments and to parallelize block-wise operations across multiple GPU wavefronts.

The API is implemented in GPU device code: it empowers user device kernel code with direct use of GPU matrix cores.
Moreover, this code can benefit from inline compiler optimization passes and does not incur additional
overhead of external runtime calls or extra kernel launches.

	Acronym

	Expansion

	GEMM

	GEneral Matrix Multiply

	WMMA

	Wavefront Mixed precision Multiply Accumulate

	ROCm

	Radeon Open Compute platform

	HIP

	Heterogeneous-Compute Interface for Portability

rocWMMA is written in C++14 and may be applied directly in device kernel code. Library code is templated
for modularity and uses available meta-data to provide opportunities for compile-time inferences and optimizations.

The rocWMMA API exposes block-wise data load / store and matrix multiply-accumulate functions appropriately sized
for thread-block execution on data fragments. Matrix multiply-accumulate functionality supports mixed precision inputs
and outputs with native fixed-precision accumulation. The rocWMMA Coop API provides wave/warp collaborations
within the thread-blocks for block-wise data load and stores. Supporting code is required for GPU device
management and for kernel invocation. Kernel code samples and tests provided are built and launched via the HIP
ecosystem within ROCm.

Below is a simple example code for calling rocWMMA functions load_matrix_sync, store_matrix_sync, fill_fragment, mma_sync.

#include <hip/hip_ext.h>
#include <hip/hip_fp16.h>
#include <hip/hip_runtime.h>

#include <iostream>
#include <vector>

#include <rocwmma/rocwmma.hpp>

using rocwmma::float16_t;
using rocwmma::float32_t;

// Matrix data initialization
template <typename DataT>
__host__ static inline void fill(DataT* mat, uint32_t m, uint32_t n)
{
 auto ld = n;
 for(int i = 0; i < m; ++i)
 {
 for(int j = 0; j < n; ++j)
 {
 // Generated data
 // Alternate sign every 3 elements
 auto value = (i * n + j) % 13;
 mat[i * ld + j] = (value % 3) ? -static_cast<DataT>(value) : static_cast<DataT>(value);
 }
 }
}

// Supports BlockM/N square sizes of
// : 16 x 16
// : 32 x 32
const int ROCWMMA_M = 16;
const int ROCWMMA_N = 16;

// Supports ROCWMMA_K sizes as
// : multiples of 16.
const int ROCWMMA_K = 16;

// AMDGCN default wave size
const int WAVE_SIZE = rocwmma::AMDGCN_WAVE_SIZE;

// Thread block
// : T_BLOCK_X must be multiple of WAVE_SIZE.
// Note: Each wave will compute one BLOCK_M x BLOCK_N output block
// Note: Workgroup will compute
// T_BLOCK_X / WAVE_SIZE x T_BLOCK_Y output blocks
// This thread block will compute (4 x 4 output blocks)
const int T_BLOCK_X = 4 * WAVE_SIZE;
const int T_BLOCK_Y = 4;

// The following device kernel is a naive implementation
// of blocked GEMM. Each wave will compute one BLOCK_M x BLOCK_N
// output block of the M x N x K GEMM, generalized as:
// D = alpha * (A x B) + beta * C
//
// In this simplified example, we assume:
// : A is in row-major format (m x k)
// : B is in col-major format (k x n)
// : C, D are in row-major format (m x n)
// : Multiplication is NOT in-place, output is written to D matrix
// : No LDS required
//
// Disclaimer: This is a simplified implementation to demonstrate API usage in
// context of wave-level GEMM computation, and is not optimized.
//
// Launchable device kernel function:
//
__global__ void gemm_wmma_d(uint32_t m, // matrix free dim m
 uint32_t n, // matrix free dim n
 uint32_t k, // matrix fixed dim k
 float16_t const* a, // device data ptr for matrix A
 float16_t const* b, // device data ptr for matrix B
 float32_t const* c, // device data ptr for matrix C
 float32_t* d, // device data ptr for matrix D
 uint32_t lda, // leading dimension for matrix A
 uint32_t ldb, // leading dimension for matrix B
 uint32_t ldc, // leading dimension for matrix C
 uint32_t ldd, // leading dimension for matrix D
 float32_t alpha, // uniform scalar
 float32_t beta) // uniform scalar
{
 // Create frags with meta-data context for block-wise GEMM decomposition
 // @tp0: fragment context = matrix_a, matrix_b or accumulator
 // @tp1: block size M
 // @tp2: block size N
 // @tp3: block size K
 // @tp4: fragment data type
 // @tp5: data layout = row_major, col_major or void (default)
 auto fragA = rocwmma::fragment<rocwmma::matrix_a, ROCWMMA_M, ROCWMMA_N, ROCWMMA_K, float16_t, rocwmma::row_major>();
 auto fragB = rocwmma::fragment<rocwmma::matrix_b, ROCWMMA_M, ROCWMMA_N, ROCWMMA_K, float16_t, rocwmma::col_major>();
 auto fragC = rocwmma::fragment<rocwmma::accumulator, ROCWMMA_M, ROCWMMA_N, ROCWMMA_K, float32_t>();
 auto fragAcc = rocwmma::fragment<rocwmma::accumulator, ROCWMMA_M, ROCWMMA_N, ROCWMMA_K, float32_t>();

 // Initialize accumulator fragment
 rocwmma::fill_fragment(fragAcc, 0.0f);

 // Tile using a 2D grid
 auto majorWarp = (blockIdx.x * blockDim.x + threadIdx.x) / WAVE_SIZE;
 auto minorWarp = (blockIdx.y * blockDim.y + threadIdx.y);

 // Target C block
 auto cRow = majorWarp * ROCWMMA_M;
 auto cCol = minorWarp * ROCWMMA_N;

 // Bounds check
 if(cRow < m && cCol < n)
 {
 // fragAcc = A x B
 for(int i = 0; i < k; i += ROCWMMA_K)
 {
 // Load the inputs
 rocwmma::load_matrix_sync(fragA, a + (cRow * lda + i), lda);
 rocwmma::load_matrix_sync(fragB, b + (i + cCol * ldb), ldb);

 // Matrix multiply - accumulate using MFMA units
 rocwmma::mma_sync(fragAcc, fragA, fragB, fragAcc);
 }

 // Fetch C matrix
 rocwmma::load_matrix_sync(fragC, c + (cRow * ldc + cCol), ldc, rocwmma::mem_row_major);

 // D = alpha * A x B + beta * C
 for(int i = 0; i < fragC.num_elements; ++i)
 {
 fragC.x[i] = alpha * fragAcc.x[i] + beta * fragC.x[i];
 }

 // Store to D
 rocwmma::store_matrix_sync(d + (cRow * ldd + cCol), fragC, ldd, rocwmma::mem_row_major);
 }
}

// Host side supporting device mgmt and launch code
__host__ void gemm_test(uint32_t m, uint32_t n, uint32_t k, float32_t alpha, float32_t beta)
{
 // Problem size check
 if((m < (ROCWMMA_M * T_BLOCK_X / WAVE_SIZE) || n < (ROCWMMA_N * T_BLOCK_Y) || k < ROCWMMA_K)
 || (m % ROCWMMA_M || n % ROCWMMA_N || k % ROCWMMA_K))
 {
 std::cout << "Unsupported size!\n";
 return;
 }

 int lda = k;
 int ldb = k;
 int ldc = n;
 int ldd = ldc;

 std::cout << "Initializing host data..." << std::endl;

 // Initialize input matrices
 std::vector<float16_t> matrixA(m * k);
 std::vector<float16_t> matrixB(k * n);
 std::vector<float32_t> matrixC(m * n);
 // Fill outputs with NaN to catch contamination
 std::vector<float32_t> matrixD(m * n, std::numeric_limits<float32_t>::signaling_NaN());

 fill(matrixA.data(), m, k);
 fill(matrixB.data(), k, n);
 fill(matrixC.data(), m, n);

 std::cout << "Initializing device data..." << std::endl;

 // Allocate and copy device memory
 float16_t* d_a;
 float16_t* d_b;
 float32_t* d_c;
 float32_t* d_d;

 const size_t bytesA = matrixA.size() * sizeof(float16_t);
 const size_t bytesB = matrixB.size() * sizeof(float16_t);
 const size_t bytesC = matrixC.size() * sizeof(float32_t);
 const size_t bytesD = matrixD.size() * sizeof(float32_t);

 CHECK_HIP_ERROR(hipMalloc(&d_a, bytesA));
 CHECK_HIP_ERROR(hipMalloc(&d_b, bytesB));
 CHECK_HIP_ERROR(hipMalloc(&d_c, bytesC));
 CHECK_HIP_ERROR(hipMalloc(&d_d, bytesD));

 CHECK_HIP_ERROR(hipMemcpy(d_a, matrixA.data(), bytesA, hipMemcpyHostToDevice));
 CHECK_HIP_ERROR(hipMemcpy(d_b, matrixB.data(), bytesB, hipMemcpyHostToDevice));
 CHECK_HIP_ERROR(hipMemcpy(d_c, matrixC.data(), bytesC, hipMemcpyHostToDevice));
 CHECK_HIP_ERROR(hipMemcpy(d_d, matrixD.data(), bytesD, hipMemcpyHostToDevice));

 auto blockDim = dim3(T_BLOCK_X, T_BLOCK_Y);
 auto gridDim = dim3(rocwmma::ceilDiv(m, ROCWMMA_M * T_BLOCK_X / WAVE_SIZE),
 rocwmma::ceilDiv(n, ROCWMMA_N * T_BLOCK_Y));

 std::cout << "Launching GEMM kernel..." << std::endl;

 hipEvent_t startEvent, stopEvent;
 CHECK_HIP_ERROR(hipEventCreate(&startEvent));
 CHECK_HIP_ERROR(hipEventCreate(&stopEvent));

 hipExtLaunchKernelGGL(gemm_wmma_d,
 gridDim,
 blockDim,
 0, // sharedMemBytes
 0, // stream
 startEvent, // Event start
 stopEvent, // event stop
 0, // flags
 m,
 n,
 k,
 d_a,
 d_b,
 d_c,
 d_d,
 lda,
 ldb,
 ldc,
 ldd,
 alpha,
 beta);

 auto elapsedTimeMs = 0.0f;
 CHECK_HIP_ERROR(hipEventSynchronize(stopEvent));
 CHECK_HIP_ERROR(hipEventElapsedTime(&elapsedTimeMs, startEvent, stopEvent));
 CHECK_HIP_ERROR(hipEventDestroy(startEvent));
 CHECK_HIP_ERROR(hipEventDestroy(stopEvent));

 // Release device memory
 CHECK_HIP_ERROR(hipFree(d_a));
 CHECK_HIP_ERROR(hipFree(d_b));
 CHECK_HIP_ERROR(hipFree(d_c));
 CHECK_HIP_ERROR(hipFree(d_d));

 std::cout << "Finished!" << std::endl;
}

int main()
{
 gemm_test(256, 256, 256, 2.1f, 2.1f);
 return 0;
}

1.1. Synchronous API

In general, rocWMMA API functions (load_matrix_sync, store_matrix_sync, mma_sync) are assumed to be synchronous when
used in context of global memory.

When using these functions in the context of shared memory (e.g. LDS memory), additional explicit workgroup synchronization
may be required due to the nature this memory usage.

1.2. Supported Data Types

rocWMMA mixed precision multiply-accumulate operations support the following data type combinations.

Data Types <Ti / To / Tc> = <Input type / Output Type / Compute Type>

where

Input Type = Matrix A/B

Output Type = Matrix C/D

Compute Type = math / accumulation type

	Ti / To / Tc

	BlockM

	BlockN

	BlockK

	i8 / i32 / i32

	16

	16

	Min: 16, pow2

	i8 / i32 / i32

	32

	32

	Min: 8, pow2

	i8 / i8 / i32

	16

	16

	Min: 16, pow2

	i8 / i32 / i32

	32

	32

	Min: 8, pow2

	f16 / f32 / f32

	16

	16

	Min: 16, pow2

	f16 / f32 / f32

	32

	32

	Min: 8, pow2

	f16 / f16 / f32

	16

	16

	Min: 16, pow2

	f16 / f16 / f32

	32

	32

	Min: 8, pow2

	f16 / f16 / f16*

	16

	16

	Min: 16, pow2

	f16 / f16 / f16*

	32

	32

	Min: 8, pow2

	__half / f32 / f32

	16

	16

	Min: 16, pow2

	__half / f32 / f32

	32

	32

	Min: 8, pow2

	__half / __half / f32

	16

	16

	Min: 16, pow2

	__half / __half / f32

	32

	32

	Min: 8, pow2

	__half / __half / __half*

	16

	16

	Min: 16, pow2

	__half / __half / __half*

	32

	32

	Min: 8, pow2

	bf16 / f32 / f32

	16

	16

	Min: 8, pow2

	bf16 / f32 / f32

	32

	32

	Min: 4, pow2

	bf16 / bf16 / f32

	16

	16

	Min: 8, pow2

	bf16 / bf16 / f32

	32

	32

	Min: 4, pow2

	bf16 / bf16 / bf16*

	16

	16

	Min: 8, pow2

	bf16 / bf16 / bf16*

	32

	32

	Min: 4, pow2

	f32 / f32 / f32

	16

	16

	Min: 4, pow2

	f32 / f32 / f32

	32

	32

	Min: 2, pow2

	f64** / f64** / f64**

	16

	16

	Min: 4, pow2

*= matrix unit accumulation is natively 32 bit precision, and is converted to desired type.

**= f64 datatype is only supported on MI-200 class AMDGPU and successors.

1.3. Supported Matrix Layouts

(N = col major, T = row major)

	LayoutA

	LayoutB

	Layout C

	LayoutD

	N

	N

	N

	N

	N

	N

	T

	T

	N

	T

	N

	N

	N

	T

	T

	T

	T

	N

	N

	N

	T

	N

	T

	T

	T

	T

	N

	N

	T

	T

	T

	T

1.3.1. Using rocWMMA API

This section describes how to use the rocWMMA library API.

1.4. rocWMMA Datatypes

	
struct matrix_a

	Input Matrix A.

	
struct matrix_b

	Input Matrix B.

	
struct accumulator

	Input/Output Matrix Accumulator.

	
struct row_major

	Data/In-memory Layout as Row Major.

	
struct col_major

	Data/In-memory Layout as Column Major.

	
class VecT

	Functional vector class.

	tparam T

	Vector data type

	tparam VecSize

	Vector storage size

	
template<typename T, int Elements, typename IsNativeType = typename std::is_fundamental<T>::type>
struct VectorStorage

	Vectorized internal storage.

	tparam T

	Storage type

	tparam Elements

	No of Elements in the vector

	tparam IsNativType

	Native or rocWMMA defined

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayoutT>
struct IOConfig

	Definition of ROCWMMA fragment input / output configurations in specific matrix context.

	tparam Matrix

	fragment context

	tparam BlockM/N/K

	block dimensions

	tparam DataT

	data type

	tparam DataLayout

	in-memory layout as col_major or row_major

	param BlockDim

	leading block dimension (row / col size)

	param KDim

	minor block dimension (row / col count)

	param MaxVectorWidth

	maximum allowable vector width

	param VectorWidth

	currently used vector width

	param CoopIndex

	shared wave index (0 = row, 1 = col)

	param IOTraits

	Input/output traits specific to AMDGCN architecture

	param Packer

	Packs raw fragment data into register

	param Unpacker

	Unpacks registers to raw fragment data

	param Broadcaster

	Sets all fragment data to a desired value

	param MatrixLayout

	Maps GPU threads to matrix shape or geometry

	param Loader

	Issues load instructions for raw fragment data

	param Storer

	Issues store instructions for raw fragment data

	param CoopLoader

	Issues cooperative load instructions for raw fragment data

	param CoopStorer

	Issues cooperative store instructions for raw fragment data

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayoutT>
struct IOShape

	Definition of rocWMMA data and matrix mapping utilities in specific matrix context.

	tparam MatrixT

	fragment context

	tparam BlockM/N/K

	block dimensions

	tparam DataT

	data type

	tparam DataLayoutT

	in-memory layout as col_major or row_major

1.5. rocWMMA Enumeration

Enumeration constants have numbering that is consistent with standard C++ libraries.

	
enum rocwmma::layout_t

	Values:

	
enumerator mem_row_major

	

	
enumerator mem_col_major

	

1.6. rocWMMA API functions

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
void rocwmma::fill_fragment(fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> &frag, DataT value)

	Fills the entire fragment with the desired value.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	value – Value of type DataT.

	Template Parameters

	
	Matrix – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
void rocwmma::load_matrix_sync(fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> &frag, const DataT *data, uint32_t ldm)

	Loads the entire fragment from the data pointer according to its matrix and data layouts. Data pointer may point to either local or global memory.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT>
void rocwmma::load_matrix_sync(fragment<MatrixT, BlockM, BlockN, BlockK, DataT> &frag, const DataT *data, uint32_t ldm, layout_t layout)

	Loads the entire fragment from the data pointer according to its matrix layout.Data pointer may point to either local or global memory. This overload provides a run-time ability to choose the data layout of the target fragment.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	layout – Matrix layout

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
void rocwmma::store_matrix_sync(DataT *data, fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> const &frag, uint32_t ldm)

	Stores the entire fragment to the data pointer according to its matrix and data layouts. Data pointer may point to either local or global memory.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT>
void rocwmma::store_matrix_sync(DataT *data, fragment<MatrixT, BlockM, BlockN, BlockK, DataT> const &frag, uint32_t ldm, layout_t layout)

	Stores the entire fragment to the data pointer according to its matrix layout. Data pointer may point to either local or global memory. This overload provides a run-time ability to choose the data layout of the target fragment.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	layout – Data layout

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename InputT, typename ComputeT, typename LayoutA, typename LayoutB>
void rocwmma::mma_sync(fragment<accumulator, BlockM, BlockN, BlockK, ComputeT> &d, fragment<matrix_a, BlockM, BlockN, BlockK, InputT, LayoutA> const &a, fragment<matrix_b, BlockM, BlockN, BlockK, InputT, LayoutB> const &b, fragment<accumulator, BlockM, BlockN, BlockK, ComputeT> const &c)

	Performs the Multiply-Accumulate operation on the fragments A, B, C and D(D = A * B + C)

Note

Frag c = d is valid

	Parameters

	
	d – Accumulator output D

	a – Input fragment A

	b – Input fragment B

	c – Input accumulator fragment C

	Template Parameters

	
	BlockM/N/K – block dimensions

	InputT – data type of input frags A and B

	ComputeT – data type of accumulator fragment C / D

	LayoutA – in-memory layout of frag A as col_major or row_major

	LayoutB – in-memory layout of frag B as col_major or row_major

	
void rocwmma::synchronize_workgroup()

	Synchronization point for all wavefronts in a workgroup.

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
void rocwmma::load_matrix_coop_sync(fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> &frag, const DataT *data, uint32_t ldm, uint32_t waveIndex, uint32_t waveCount, uint32_t splitCount)

	Cooperative Load Matrix - Loads the entire fragment with data from memory address cooperatively across waves. Each cooperative wave is responsible in loading a portion of the final fragment. Note that the full fragment data is not cohesive for individual waves as they only load a piece of the data. This function may be paired with store_matrix_sync to move a single fragment collaboratively between memory locations.

The full load is split into work items (splitCount). Work items are assigned in round robin fashion to waves in the range of [0, waveCount). The current wave index determines the order of the current wave in the collaboration pool. Work items are consumed in order by waves [0, waveCount) until there are no more work items and the operation is completed.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	waveIndex – Index assignment of current wave in collaboration

	waveCount – Number of waves assigned for collaboration

	splitCount – Number of work items to split the operation

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
inline void rocwmma::load_matrix_coop_sync(fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> &frag, const DataT *data, uint32_t ldm, uint32_t waveIndex, uint32_t waveCount)

	Cooperative Load Matrix - Loads the entire fragment with data from memory address cooperatively across waves. Each cooperative wave is responsible in loading a portion of the final fragment. Note that the full fragment data is not cohesive for individual waves as they only load a piece of the data. This function may be paired with store_matrix_sync to move a single fragment collaboratively between memory locations.

The full load is split into work items (default = waveCount). Work items are assigned in round robin fashion to waves in the range of [0, waveCount). The current wave index determines the order of the current wave in the collaboration pool. Work items are consumed in order by waves [0, waveCount) until there are no more work items and the operation is completed.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	waveIndex – Index assignment of current wave in collaboration

	waveCount – Number of waves assigned for collaboration

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
void rocwmma::load_matrix_coop_sync(fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> &frag, const DataT *data, uint32_t ldm)

	Cooperative Load Matrix - Loads the entire fragment with data from memory address cooperatively across waves. Each cooperative wave is responsible in loading a portion of the final fragment. Note that the full fragment data is not cohesive for individual waves as they only load a piece of the data. This function may be paired with store_matrix_sync to move a single fragment collaboratively between memory locations.

The full load is split into work items. This overload is conducive to GEMM workload where matrix_a fragments collaboratively load common data with other waves in the same row. Likewise, matrix_b fragments collaboratively load common data with other waves in the same column. Workload is split evenly across all waves in collaborative dimension. Split count = wave count = workgroupDim<1> (matrix_a) | workgroupDim<0> (matrix_b) Wave index = waveCoord<1> (matrix_a) | waveCoord<0> (matrix_b)

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
void rocwmma::store_matrix_coop_sync(DataT *data, fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> const &frag, uint32_t ldm, uint32_t waveIndex, uint32_t waveCount, uint32_t splitCount)

	Cooperative Store Matrix - Stores the entire fragment to data address cooperatively across waves. Each cooperative wave is responsible in storing a portion of the final fragment. Note that the full fragment data is not required to be cohesive for individual waves as they only store a piece of the data. This function may be paired with load_matrix_sync to move a single fragment collaboratively between memory locations.

The full store is split into work items (splitCount). Work items are assigned in round robin fashion to waves in the range of [0, waveCount). The current wave index determines the order of the current wave in the collaboration pool. Work items are consumed in order by waves [0, waveCount) until there are no more work items and the operation is completed.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	waveIndex – Index assignment of current wave in collaboration

	waveCount – Number of waves assigned for collaboration

	splitCount – Number of work items to split the operation

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
void rocwmma::store_matrix_coop_sync(DataT *data, fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> const &frag, uint32_t ldm, uint32_t waveIndex, uint32_t waveCount)

	Cooperative Store Matrix - Stores the entire fragment to data address cooperatively across waves. Each cooperative wave is responsible in storing a portion of the final fragment. Note that the full fragment data is not required to be cohesive for individual waves as they only store a piece of the data. This function may be paired with load_matrix_sync to move a single fragment collaboratively between memory locations.

The full store is split into work items (default = waveCount). Work items are assigned in round robin fashion to waves in the range of [0, waveCount). The current wave index determines the order of the current wave in the collaboration pool. Work items are consumed in order by waves [0, waveCount) until there are no more work items and the operation is completed.

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	waveIndex – Index assignment of current wave in collaboration

	waveCount – Number of waves assigned for collaboration

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

	
template<typename MatrixT, uint32_t BlockM, uint32_t BlockN, uint32_t BlockK, typename DataT, typename DataLayout>
void rocwmma::store_matrix_coop_sync(DataT *data, fragment<MatrixT, BlockM, BlockN, BlockK, DataT, DataLayout> const &frag, uint32_t ldm)

	Cooperative Store Matrix - Stores the entire fragment to data address cooperatively across waves. Each cooperative wave is responsible in storing a portion of the final fragment. Note that the full fragment data is not required to be cohesive for individual waves as they only store a piece of the data. This function may be paired with load_matrix_sync to move a single fragment collaboratively between memory locations.

The full store is split into work items. This overload is conducive to GEMM workload where matrix_a fragments collaboratively use common data with other waves in the same row. Likewise, matrix_b fragments collaboratively use common data with other waves in the same column. Workload is split evenly across all waves in collaborative dimension.

Split count = wave count = workgroupDim<1> (matrix_a) | workgroupDim<0> (matrix_b) Wave index = waveCoord<1> (matrix_a) | waveCoord<0> (matrix_b)

	Parameters

	
	frag – Fragment of type MatrixT with its associated block sizes, data type and layout

	data – Data pointer to global/local memory

	ldm – Leading dimension size

	Template Parameters

	
	MatrixT – fragment context

	BlockM/N/K – block dimensions

	DataT – data type

	DataLayout – in-memory layout as col_major or row_major

2. Getting Started Guide for Linux

2.1. Introduction

This document contains instructions for installing, using, and contributing to rocWMMA.
The quickest way to install is from prebuilt packages. Alternatively, there are instructions to build from source. The document also contains an API Reference Guide, Programmer’s Guide, and Contributor’s Guides.

2.1.1. Documentation Roadmap

The following is a list of rocWMMA documents in the suggested reading order:

	Getting Started Guide (this document): Describes how to install and configure the rocWMMA library; designed to get users up and running quickly with the library.

	API Reference Guide : Provides detailed information about rocWMMA functions, data types and other programming constructs.

	Programmer’s Guide: Describes the code organization, Design implementation detail, Optimizations used in the library and those that should be considered for new development and Testing & Benchmarking detail.

	Contributor’s Guide : Describes coding guidelines for contributors.

2.2. Prerequisites

	A ROCm enabled platform, more information here [https://rocm.github.io/].

2.3. Installing pre-built packages

rocWMMA can be installed on Ubuntu or Debian using

sudo apt-get update
sudo apt-get install rocWMMA

rocWMMA can be installed on CentOS using

sudo yum update
sudo yum install rocWMMA

rocWMMA can be installed on SLES using

sudo dnf upgrade
sudo dnf install rocWMMA

Once installed, rocWMMA can be used just like any other library with a C++ API.
The rocwmma.hpp header file will need to be included in the user code in order to make calls
into rocWMMA.

Once installed, rocwmma.hpp can be found in the /opt/rocm/include directory.
Only this installed file should be used when needed in user code.
Other rocWMMA files can be found in /opt/rocm/include/internal, however these files
should not be directly included.

2.4. Building and Installing rocWMMA

For most users building from source is not necessary, as rocWMMA can be used after installing the pre-built
packages as described above. If desired, the following instructions can be used to build rocWMMA from source.

2.4.1. System Requirements

As a general rule, 5GB of system memory is required for a full rocWMMA build. This value can be lower if rocWMMA is built without tests. This value may also increase in the future as more functions are added to rocWMMA.

2.4.2. Minimum GPU Requirements

	AMD Instinct™ class GPU with matrix core support: Minimum MI-100

	Note: Double precision FP64 datatype support minimum MI-200 +

2.4.3. Download rocWMMA

The rocWMMA source code is available at the rocWMMA github page [https://github.com/ROCmSoftwarePlatform/rocWMMA]. rocWMMA has a minimum ROCm support version 4.3.
Check the ROCm Version on your system. For Ubuntu use

apt show rocm-libs -a

For Centos use

yum info rocm-libs

The ROCm version has major, minor, and patch fields, possibly followed by a build specific identifier. For example the ROCm version could be 4.0.0.40000-23, this corresponds to major = 4, minor = 0, patch = 0, build identifier 40000-23.
There are GitHub branches at the rocWMMA site with names rocm-major.minor.x where major and minor are the same as in the ROCm version. For ROCm version 4.0.0.40000-23 you need to use the following to download rocWMMA:

git clone -b release/rocm-rel-x.y https://github.com/ROCmSoftwarePlatform/rocWMMA.git
cd rocWMMA

Replace x.y in the above command with the version of ROCm installed on your machine. For example: if you have ROCm 5.0 installed, then replace release/rocm-rel-x.y with release/rocm-rel-5.0

The user can build either

	library

	library + samples

	library + tests

	library + tests + assembly

You only need (library) if you call rocWMMA from your code.
The client contains the test samples and benchmark code.

Below are the project options available to build rocWMMA library with/without clients.

	Option

	Description

	Default Value

	AMDGPU_TARGETS

	Build code for specific GPU target(s)

	gfx908:xnack-;gfx90a:xnack-;gfx90a:xnack+

	ROCWMMA_BUILD_TESTS

	Build Tests

	ON

	ROCWMMA_BUILD_SAMPLES

	Build Samples

	ON

	ROCWMMA_BUILD_ASSEMBLY

	Generate assembly files

	OFF

	ROCWMMA_BUILD_VALIDATION_TESTS

	Build validation tests

	ON (requires ROCWMMA_BUILD_TESTS=ON)

	ROCWMMA_BUILD_BENCHMARK_TESTS

	Build benchmark tests

	OFF (requires ROCWMMA_BUILD_TESTS=ON)

	ROCWMMA_BUILD_EXTENDED_TESTS

	Build extended testing coverage

	OFF (requires ROCWMMA_BUILD_TESTS=ON)

	WMMA_VALIDATE_WITH_ROCBLAS

	Use rocBLAS for validation tests

	ON (requires ROCWMMA_BUILD_VALIDATION_TESTS=ON)

	WMMA_BENCHMARK_WITH_ROCBLAS

	Include rocBLAS benchmarking data

	OFF (requires ROCWMMA_BUILD_BENCHMARK_TESTS=ON)

2.4.4. Build only library

CMake has a minimum version requirement 3.5.

Minimum ROCm version support is 4.3.

By default, the project is configured as Release mode.

To build only library, run the following comomand :

CC=hipcc CXX=hipcc cmake -B<build_dir> . -DROCWMMA_BUILD_TESTS=OFF -DROCWMMA_BUILD_SAMPLES=OFF

Here are some other example project configurations:

	Configuration

	Command

	Basic

	CC=hipcc CXX=hipcc cmake -B<build_dir> .

	Targeting MI100

	CC=hipcc CXX=hipcc cmake -B<build_dir> . -DAMDGPU_TARGETS=gfx908:xnack-

	Debug build

	CC=hipcc CXX=hipcc cmake -B<build_dir> . -DCMAKE_BUILD_TYPE=Debug

	Build without rocBLAS(default on)

	CC=hipcc CXX=hipcc cmake -B<build_dir> . -DROCWMMA_VALIDATE_WITH_ROCBLAS=OFF -DROCWMMA_BENCHMARK_WITH_ROCBLAS=OFF

After configuration, build with

cmake –build <build_dir> – -j

2.4.5. Build library + samples

To build library and samples, run the following comomand :

CC=hipcc CXX=hipcc cmake -B<build_dir> . -DROCWMMA_BUILD_TESTS=OFF -DROCWMMA_BUILD_SAMPLES=ON

After configuration, build with

cmake –build <build_dir> – -j

The samples folder in <build_dir> contains executables in the table below.

	executable name

	description

	simple-gemm

	a simple GEMM operation [D = alpha * (A x B) + beta * C] using rocWMMA API

	sgemv

	a simple GEMV operation [y = alpha * (A) * x + beta * y] using rocWMMA API

	simple-dlrm

	a simple DLRM operation using rocWMMA API

2.4.6. Build library + tests

rocWMMA has several test suites that can be built:

	DLRM tests

	GEMM tests

	Unit tests

DLRM tests cover the dot product interactions between embeddings used in DLRM.

GEMM tests cover block-wise Generalized Matrix Multiplication (GEMM) implemented with rocWMMA.

Unit tests cover various aspects of rocWMMA API and internal functionality.

rocWMMA can build both validation and benchmark tests. The library uses CPU or rocBLAS methods for validation (where available) and benchmark comparisons based on the provided project option.
By default, the project is linked against rocBLAS for validating results.
Minimum ROCBLAS library version requirement is 2.39.0 for ROCm 4.3.0

To build library and tests, run the following command :

CC=hipcc CXX=hipcc cmake -B<build_dir> .

After configuration, build with

cmake –build <build_dir> – -j

The tests in <build_dir> contains executables in the table below.

	executable name

	description

	dlrm/dlrm_dot_test-*

	a DLRM implementation using rocWMMA API

	dlrm/dlrm_dot_lds_test-*

	a DLRM implementation using rocWMMA API with LDS shared memory

	gemm/mma_sync_test-*

	a simple GEMM operation [D = alpha * (A x B) + beta * C] using rocWMMA API

	gemm/mma_sync_multi_test-*

	a modified GEMM operation, each wave targets a sub-grid of output blocks using rocWMMA API

	gemm/mma_sync_multi_ad_hoc_test-*

	an adhoc version of mma_sync_multi_test-*

	gemm/mma_sync_multi_lds_test-*

	a modified GEMM operation, each wave targets a sub-grid of output blocks using LDS memory and rocWMMA API and wave-level collaboration

	gemm/mma_sync_multi_lds_ad_hoc_test-*

	an adhoc version of mma_sync_multi_lds_test-*

	gemm/mma_sync_coop_wg_test-*

	a modified GEMM operation, each wave targets a sub-grid of output blocks using LDS memory and rocWMMA API and workgroup-level collaboration

	gemm/mma_sync_coop_wg_ad_hoc_test-*

	an adhoc version of mma_sync_coop_wg_test-*

	gemm/barrier_test-*

	a simple GEMM operation with wave synchronization

	unit/fill_fragment_test

	tests fill_fragment API function

	unit/load_store_matrix_sync_test

	tests load_matrix_sync and store_matrix_sync API functions

	unit/load_store_matrix_coop_sync_test

	tests load_matrix_coop_sync and store_matrix_coop_sync API functions

	unit/contamination_test

	tests against contamination of pristine data for loads and stores

	unit/layout_test

	tests accuracy of internal matrix layout patterns

	unit/mapping_util_test

	tests mapping utilities used in rocWMMA implementations

	unit/vector_iterator_test

	tests internal vector storage implementation

*= validate: executables that compare outputs for correctness against reference sources such as CPU or rocBLAS calculations.

*= bench: executables that measure kernel execution speeds and may compare against those of rocBLAS references.

2.4.7. Build library + Tests + Assembly

To build library and tests with assembly code generation, run the following command :

CC=hipcc CXX=hipcc cmake -B<build_dir> . -DROCWMMA_BUILD_ASSEMBLY=ON

After configuration, build with

cmake –build <build_dir> – -j

The assembly folder in <build_dir> contains assembly generation of test executables in the format [test_executable_name.s]

3. Programmer’s Guide

3.1. Library Source Code Organization

The rocWMMA code is split into four major parts:

	The library directory contains all source code for the library.

	The samples directory contains real-world use-cases of the rocWMMA API.

	The test directory contains all validation, performance and unit tests of rocWMMA API.

	Infrastructure

3.1.1. The library directory

3.1.1.1. library/include/rocwmma/

Contains C++ include files for the rocWMMA API. These files also contain Doxygen
comments that document the API.

3.1.1.2. library/include/internal

Internal include files for:

	Type support

	Input / output configuration, shapes and traits

	Layout

	Mapping Utility

	Packing and unpacking

	Conversion and broadcasting

	Load and store

	Matrix multiply-accumulate

	Cooperative load and store

	Threadblock synchronization

	Utility code

3.1.2. The samples directory

3.1.2.1. samples/sgemmv.cpp

sample code for calling Simple matrix multiply-accumulate with a vector demonstration, without LDS and no transpose.

3.1.2.2. samples/simple_gemm.cpp

Sample code for calling Simple GEMM algorithm demonstration without LDS memory usage and no transpose.

3.1.2.3. samples/simple_dlrm.cpp

Sample code for calling Simple Deep Learning Recommendation Model (DLRM) for machine learning.

3.1.2.4. samples/common.hpp

Common code used by all the above rocWMMA samples files.

3.1.3. The test directory

3.1.3.1. test/bin

Script to generate benchmark plots from the gtest output dumps of benchmark tests of rocWMMA.

3.1.3.2. test/dlrm

Test code for various strategies of DLRM application. This test is used to validate dlrm functions using rocWMMA API.

3.1.3.3. test/gemm

Test Code for various strategies of GEMM application. This test is used to validate and benchmark GEMM functions using rocWMMA API.

3.1.3.4. test/unit

Test code for testing the basic functional units of rocWMMA library.

3.1.4. Infrastructure

	CMake is used to build and package rocWMMA. There are CMakeLists.txt files throughout the code.

	Doxygen/Breathe/Sphinx/ReadTheDocs are used to produce documentation. Content for the documentation is from:

	Doxygen comments in include files in the directory library/include

	files in the directory docs/source.

	Jenkins is used to automate Continuous Integration testing.

	clang-format is used to format C++ code.

4. Contributor’s Guide

4.1. License Agreement

	The code I am contributing is mine, and I have the right to license
it.

	By submitting a pull request for this project I am granting you a
license to distribute said code under the MIT License for the
project.

4.2. Pull-request guidelines

Our code contriubtion guidelines closely follows the model of GitHub
pull-requests [https://help.github.com/articles/using-pull-requests/].
The rocWMMA repository follows a workflow which dictates a /master branch where releases are cut, and a
/develop branch which serves as an integration branch for new code. Pull requests should:

	target the develop branch for integration

	ensure code builds successfully.

	do not break existing test cases

	new functionality will only be merged with new unit tests

	new unit tests should integrate within the existing googletest framework.

	tests must have good code coverage

	code must also have benchmark tests, and performance must approach
the compute bound limit or memory bound limit.

4.3. StyleGuide

This project follows the CPP Core
guidelines [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md],
with few modifications or additions noted below. All pull-requests
should in good faith attempt to follow the guidelines stated therein,
but we recognize that the content is lengthy. Below we list our primary
concerns when reviewing pull-requests.

4.3.1. Interface

	Library code should use C++14

	Our minimum supported compiler is hipcc 4.4

	Avoid CamelCase

	This rule applies specifically to publicly visible APIs, but is also
encouraged (not mandated) for internal code

4.3.2. Philosophy

	P.2 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-Cplusplus]:
Write in ISO Standard C++14 (especially to support windows, linux and
macos plaforms)

	P.5 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-compile-time]:
Prefer compile-time checking to run-time checking

4.3.3. Implementation

	SF.1 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-file-suffix]:
Use a .cpp suffix for code files and an .hpp suffix for
interface files if your project doesn’t already follow another
convention

	SF.5 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-consistency]:
A .cpp file must include the .hpp file(s) that defines its
interface

	SF.7 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-using-directive]:
Don’t put a global using-directive in a header file

	SF.8 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-guards]:
Use #include guards for all .hpp files

	SF.21 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-unnamed]:
Don’t use an unnamed (anonymous) namespace in a header

	SL.10 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rsl-arrays]:
Prefer using std::array or std::vector instead of a C array

	C.9 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-private]:
Minimize the exposure of class members

	F.3 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-single]:
Keep functions short and simple

	F.21 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-out-multi]:
To return multiple ‘out’ values, prefer returning a std::tuple

	R.1 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-raii]:
Manage resources automatically using RAII (this includes
std::unique_ptr & std::shared_ptr)

	ES.11 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-auto]:
Use auto to avoid redundant repetition of type names

	ES.20 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always]:
Always initialize an object

	ES.23 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-list]:
Prefer the {} initializer syntax

	CP.1 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-concurrency]:
Assume that your code will run as part of a multi-threaded program

	I.2 [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Ri-global]:
Avoid global variables

4.3.4. Format

C++ code is formatted using clang-format. To run clang-format
use the version in the /opt/rocm/llvm/bin directory. Please do not use your
system’s built-in clang-format, as this may be an older version that
will result in different results.

To format a file, use:

/opt/rocm/llvm/bin/clang-format -style=file -i <path-to-source-file>

To format all files, run the following script in rocWMMA directory:

#!/bin/bash
git ls-files -z *.cc *.cpp *.h *.hpp *.cl *.h.in *.hpp.in *.cpp.in | xargs -0 /opt/rocm/llvm/bin/clang-format -style=file -i

Also, githooks can be installed to format the code per-commit:

./.githooks/install

5. Disclaimer

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

	AMD, the AMD Arrow logo, Radeon, Ryzen, Epyc, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

	Google(R) is a registered trademark of Google LLC.

	PCIe(R) is a registered trademark of PCI-SIG Corporation.

	Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

	Ubuntu and the Ubuntu logo are registered trademarks of Canonical Ltd.

	Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Index

 R
 | V

R

 	
 	rocwmma::accumulator (C++ struct)

 	rocwmma::col_major (C++ struct)

 	rocwmma::detail::VectorStorage (C++ struct)

 	rocwmma::fill_fragment (C++ function)

 	rocwmma::IOConfig (C++ struct)

 	rocwmma::IOShape (C++ struct)

 	rocwmma::layout_t (C++ enum)

 	rocwmma::layout_t::mem_col_major (C++ enumerator)

 	rocwmma::layout_t::mem_row_major (C++ enumerator)

 	
 	rocwmma::load_matrix_coop_sync (C++ function), [1], [2]

 	rocwmma::load_matrix_sync (C++ function), [1]

 	rocwmma::matrix_a (C++ struct)

 	rocwmma::matrix_b (C++ struct)

 	rocwmma::mma_sync (C++ function)

 	rocwmma::row_major (C++ struct)

 	rocwmma::store_matrix_coop_sync (C++ function), [1], [2]

 	rocwmma::store_matrix_sync (C++ function), [1]

 	rocwmma::synchronize_workgroup (C++ function)

V

 	
 	VecT (C++ class)

 nav.xhtml

 Table of Contents

 		
 rocWMMA User Guide

 		
 Introduction

 		
 Synchronous API

 		
 Supported Data Types

 		
 Supported Matrix Layouts

 		
 Using rocWMMA API

 		
 rocWMMA Datatypes

 		
 rocWMMA Enumeration

 		
 rocWMMA API functions

 		
 Getting Started Guide for Linux

 		
 Introduction

 		
 Documentation Roadmap

 		
 Prerequisites

 		
 Installing pre-built packages

 		
 Building and Installing rocWMMA

 		
 System Requirements

 		
 Minimum GPU Requirements

 		
 Download rocWMMA

 		
 Build only library

 		
 Build library + samples

 		
 Build library + tests

 		
 Build library + Tests + Assembly

 		
 Programmer’s Guide

 		
 Library Source Code Organization

 		
 The library directory

 		
 The samples directory

 		
 The test directory

 		
 Infrastructure

 		
 Contributor’s Guide

 		
 License Agreement

 		
 Pull-request guidelines

 		
 StyleGuide

 		
 Interface

 		
 Philosophy

 		
 Implementation

 		
 Format

 		
 Disclaimer

_static/minus.png

_static/plus.png

_static/file.png

